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A FINITE ELEMENT ANALYSIS OF ADHESIVELY BONDED COMPOSITE JOINTS
GEOMETRIC NONLINEARITY, NONLINEAR VISCOELASTICITY,
MOISTURE DIFFUSION AND DELAYED FAILURE

by

S. Roy*and J. N. Reddy**
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

SUMMARY

A two-dimensional finite-element computational procedure is
developed for the accurate analysis of the strains and stresses in
adhesively bonded joints. The adhesive layer is modeled using
Schapery's nonlinear singie integral constitutive Taw for uniaxial and
multiaxial states of stress. Effect of temperature and stress level on
the viscoelastic response is taken into account by & nonlinear shift
factor definition. Penetrant sorption is accounted for by a nonlinear
Fickean diffusion model in which the diffusion coefficient is dependent
on the penetrant concentration and the dilatational strain. A delayed
failure criterion based on the Reiner-Weisenberg failure theory has also
been implemented in the finite element code. The applicability of the
proposed models is demonstrated by several numerical examples.

* Graduate Research Assistant
** Clifton C. Garvin Professor of Engineering
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1. INTRODUCTION

1.1 Preliminary Comments

Ouring the last two years of research for the office of Naval
Research a finite-element computer program, NOVA, has been under
continuous development for an accurate analysis of adhesively bonded
joints (see [1,2])). The finite element program NOVA uses linearly
elastic elements to model the adherends. The adherends can be
represented as isotropic, orthotropic or laminated composite
materials. The large displacements and rotations experienced by the
adherends in many types of loading are accounted for by the updated
Lagrangian description of motion. The adhesive layer is modeled using a
special element that employs a multi-axial extension of Schapery's
nonlinear single integral stress-strain law as the constitutive
equation. The finite element formulation based on the updated
Lagrangian incremental equations is presented in detail in [1,2]. The
element library contains an eight noded isoparametric element which
employs quadratic interpolation functions to represent the displacement
field as well as element geometry. The program can be used to conduct
pilane stress, plane strain, or axisymmetric analysis of an adhesively
bonded structure subject to a time varying thermal and mechanical
loading. The program is modified recently to include a nonlinear
Fickean moisture diffusion model and a energy-based delayed failure
criterion. This report describes the theory, finite element formulation
and applications of NOVA to moisture diffusion and delayed failure

problems.
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1.2. A Review of the Literature

Over the years several time-dependent failure criteria have been
proposed for predicting yield and fracture of polymeric materials.
Nagdhi and Murch [3] and Crochet [4] have used a modified von Mises
criteria for viscoelastic materials by assuming that the radius of the
yield surface depends upon the strain history. An energy based delayed
failure criterion for polymeric materials subjected to isothermal creep
was developed by Reiner and Weissenberg [5]. According to this theory,
failure occurs when the stored deviatoric strain energy in a
viscoelastic material reaches a certain maximum value called the
resilience, which is a material constant. Bruller [6] and Hiel et al.
[7] applied the Reiner-Weisenberg failure criterion to various
viscoelastic materials, including composite laminates, and obtained good
agreement with experimental observations.

It is now well known that moisture diffusion can have a significant
effect on the stress field within an adhesive layer in a bond. Weitsman
[8] used a variational method coupled with Fickean diffusion law to
study the interfacial stresses in viscoelastic adhesive-layers due to
moisture sorption. From the results of this uncoupled linear
thermoelastic analysis, he concluded that the location of the maximum
interfacial tensile stress depends on the geometry of the joint as well
as the progyress of the diffusion process within the joint. Weitsman [9]
used the correspondence principle to generate a linear viscoelastic
solution from the linear elastic analysis 6f moisture sorption within an
adhesive layer. He observed that the viscoelastic analysis predicts
detrimental effects due to stress reversals caused by fluctuations in

relative humidity, that are not predicted in an elastic analysis.




However, he acknowledged the omission of the effect of moisture content
on the viscoelastic response of the resins in his analysis.

Tobing, et al. [10] used the finite element method to study the
micro-mechanical effect of moisture sorption in graphite-epoxy
composites. Using a constitutive equation based on the Flory-Huggins
lattice model for polymer solvent interactions, they concluded that the
stresses at the graphite-epoxy interface have a strong dependence on
moisture content, fiber spacing, and applied load.

Yaniv and Ishai [11] developed a linear viscoelastic closed form
solution as well as a nonlinear finite element solution algorithm to
study the hygrothermal effects in a bonded fiber-reinforced
plastic/aluminum system. The linear solution was used for short-term
predictions at low strain levels, whereas the finite element solution
was used for long term predictions in which geometric and material
nonlinearities were taken into account. The authors observed that the
presence of moisture tends to considerably reduce the stress level in
the adhesive layer and may lead to significant variation in tne time-
dependent deformation of the test specimen as compared to the dry state.

In the references cited above, various authors have underscored the
effect of moisture content on the viscoelastic response of the test
specimen. However, the effect of the viscoelastic stress field on the
diffusion coefficient was not considered. Lefebvre et al. [12] extended
the free volume concept to define a diffusion coefficient that is a
function of temperature, dilatational strain and solvent
concentration. The proposed nonlinear diffusion model showed good
predictive capability for different values of temperature and moisture

conentrations. They concluded that in order to obtain an accurate




solution for the hygrothermal effects within an adhesive bond, the
nonlinear diffusion problem needs to be solved in conjunction with the
nonlinear viscoelastic boundary-value problem until convergence is

achieved.

2. NONLINEAR VISCOELASTIC FORMULATION
2.1 Introduction

A thermodynamically consistent theory for a single integral
representation of nonlinear viscoelasticity was first proposed by
Schapery [13]. The law can be derived from fundamental principles using
the concepts of irreversible thermodynamics. A comprehensive review of
the thermodynamics basis of Schapery's theory has been presented by Hiel
et al. [14].

The following two sections dea) with the review and application of
Schapery's single integral constitutive law to problems with uniaxial
and multiaxial states of stress, respectively. The constitutive
equations thus obtained are suitable for non-linear viscoelastic finite

element analysis.

2.2 Uniaxial Stress State
The uniaxial nonlinear viscoelastic constitutive equation of
Schapery [13] can be written for an isotropic material as,

t

t t t
0, + ot Io (" - %) I (g5 51ds. (2.1)

tt
€ = go:

In Eq. (2.1), et represents unjaxial kinematic strain at current time
t, ot is the Cauchy stress at time t, Do is the instantaneous elasti-
compliance and aD(v) is a transient creep compliance function.

Superscript, t, denotes current time. The factor g; defines stress and




temperature effects on the instantaneous elastic compliance and is a
measure of state dependent reduction (or increase) in stiffness,

gg = go(o,T). Transient (or creep) compliance factor g% has similar
meaning, operating on the creep compliiance component. The factor

g; accounts for the influence of load rate on creep, and depends on

stress and temperature. The function wt represents a reduced time scale

parameter defined by,
t
I s y-1
Vo= Io (a%7)7ds, (2.2)

where azT is a time scale 'shift factor'. For thermarheologically
simple materials, a = a(T) is a function of temperature T only. This
function modifies, in general, viscoelastic response as a functien of

ZT shifts the creep data

temperature and stress. Mathematically, a
parallel to the time axis relative to a master curve for creep strain
versus time. In this model, four material parameters (gg, g%, gg and at)
are available to characterize the nonlinear behavior instead of only one
with the time scale shifting procedure of Knauss and Emri [15].

The transient creep compliiance, aD(¢), can be expressed in

exponential form as,
_xrwt
aD(v) = 2 Dr[l -e Iy (2.3)
r

where 0. and A, are constants. Substitution of Egq. (2.3) in Eq. (2.1)

gives,

t s
t - (w-u)
_ t t t i\ r d S s
= g0 *+ 9y IO ) D1 - e | g5 9597 1ds. (2.4)

.t

Letting the product gsoS be expressed as 6* and simplifying the
9 2

integrand on the right hand side of £q. (2.4) yields,




t s
t t -x (v7-97) .S
t th t t d S t r dG
e =900 +9; y D. f g5 6ds - g ) D, [ e Jo ds.
r 0 r 0
(2.5)

The third integration term on the right hand side of Egq. (2.5) is
now separated into two parts, the first part having limits from zero
to (t - at) and the second integral spanning only the current load step,

i.e., from (t - st) to t. Hence,

t —xr(wt - ws) 4GS t-at -xr(wt-ws) 4GS
e a5 ds = e T ds
0 0
t s
t A (v-v7) S
s e T & ds. (2.6)
t-at

The first term on the right hand side of Eq. (2.6) can be rewritten as,

t s t
t-at - _(v7-07) .S -x A
r dG _ r t-at S
0 e a—s‘-‘ds = e qY‘ , (2./)
where
Awt = wt - wt'At (2.8)
t-at s

t-at - (v -0°) LaS
qt it - e " 96 s, (2.9)

r "0 ds

The second integral on the right hand side of Eq. (2.6) is now
integrated by parts. To carry out the integration, it is assumed

that Gt varies linearly over the current time step at. Hence,

; t s
" e—\r(w ) d6° ds
) ds

t-at
t s, |t t s
A (v =) A (b7-07)
_ QEE e T ] t dZGS e ' 45
ds t-at  t-at ds’ A
6




(2.10)

In arriving at the second step, it is assumed that GS is linear and
hence its second derivative is zero. Since Gt has been assumed to be a

1inear function of time over the current load step, we can write

ST (2.11)

Substitution of Eg. (2.11) into Eq. (2.10) gives

t s
t - (v -v7) .S
- r dG _ it t-at, .t
- e g ds = [G" -G 180, (2.12)
where,
t
-\ AV
Bt = l_;_g__i___. (2.13)
r . t
xrAv

Substituting Eq. (2.9) and Eq. (2.12) back into Eq. (2.5), and

writing Gt = ggft, one obtains
t ot tto, o tto-oott
T [goDo t 99 z Dr 919, < Drdrl”
t
")\ .'\.lJ
t t-at t t-2t t-at,
h Z Drig2 8.7 -e | q, te (2.14)

Defining instantaneous compliiance DE as the compliance term
multiplying the instantaneous stress ct, and the remaining terms in Eq.

. as eregitary strains s, ONe can write
(2.18) as heredit trains E° it

o + £ = F(a), (2.15)

where

t _ _tht t t tt - t
DI B goDo * 99, ; Dr - 919 % Drsr (2.16)
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t _t t-at t t-at ‘*r“*t t-ot
E" = 91{; D.lg; " "80 " - e M PN (2.17)

Equation (2.15) expresses Schapery's single integral constitutive
Jaw in terms of a stress operator that includes instantaneous compliance
and hereditary strains.

t in Eq. (2.17) is the rth

It is to be noted that the term qﬁ’A
component of the hereditary integral series at the end of the previous
load step (i.e. at time equals t - at). The expression for the
hereditary integral at the end of the current load step (i.e. at time t)
can be derived in the form of a recurrence formula. From Bq. (2.9), one

can write

t s
e N St O P

q. =] e Fds

t s t s
A M e t 20717 e
= J‘ e d—s—' ds + J. e d<
0 t-at -

ds. (2.18)

Using the results from Egs. (2.9) and (2.12), the above equation can be

reduced to
t VWY pat tt t-at t-at, .t
qr = e qr. + [920 - 92 0 lers (219)

where sﬁ is defined by Eg. (2.13).

2.3 Mult.axial Stress State
For a thermorheologically simple anisotropic viscoelastic material
under a multiaxial state of stress, the constitutive law proposed by

Schapery (13} is,

+ — Ae (2.20)




"y 4

t -
- ij, t Ty 3 .
se, = {m aSyn(v™ - w7) - (54 5/35)d- (2.21)

where eij and °ij are the components of the strain and stress tensors,

respectively; GR is the Gibbs free energy, ;ij
components of the second and fourth order material property tensors,

iJ
and ASmn are the

respectively; and ag is a material kernel function defined in [13}. The
quantities GR, ag and ;mn are, in general, functions of ten

variables, °ij and temperature T. Note that all repeated indices in
Eqs. (2.20) and (2.21) are to be summed over their range (1,2,3).

Due to the complex nature of £q. (2.20) it is not possible to
determine the material properties in this equation from the uniaxial
tests outlined in [13]. However, it is possible to construct a set of
small strain, three-dimensional constitutive equations from Eq. (2.20),
which is consistent with the thermodynamic theory in {13} and yet
enables all properties to be evaluated from uniaxial tests. The

assumptions which need to be made for this purpose are as follows:

a) The Gibb's free enerqy G, is a quadratic function of stress,
9y B

(b) %53 = 745 (2.22)
When the free energy GR is a quadratic function of stress one has
- G - s™(0) (2.23)
33ij 1] “mn® )

where ST?(O) are the instantaneous components of the linear viscoelastic
creep compliance tensor. Equation (2.23) implies that the initial
response of the material is linearly elastic under suddenly applied
stresses, which is often the case for metals and plastics.

The second assumption, on the other hand, leads to the

linearization of the coefficient of the transient term in Eq. (2.20).




Mathematically, this is given by,
30 1, if i=mand j =
== | (2.28)
ij 0, if i tmand j « n
Equation (2.24) implies that the jump in strain due to load application
equals the jump when the load is removed. This behavior is exhibited by

some types of plastics [16].

Substituting Egqs. (2.23) and (2.24) in Eqs. (2.20) and (2.21), one

obtains
t _ mn “t
eij = Sij(0)°mn + se; i (2.25)
1 rt mn T
Aeij = { S (w -y ) =— 31 (92 mn)dr, (2.26)

where g; = l/aé. Equation (2.25) is a set of three-dimensional
constitutive equations for anisostropic viscoelastic materials which
includes the nonlinear functions gg and azT appearing in the uniaxial
relations (2.1) and (2.2). Note that the functions gg and aET are
expressed as a function of the octrahedral shear stress.

For a homogeneous isotropic nonlinear viscoeiastic material, Eq.

(2.24) reduces to the form presented by Schapery ([13] and [16]),

t tt ‘ vigt to
e = 1J}{gzoij} + D - JHigyo 550 (2.27)
where
(bt -t t
tJ“gzciJ} = J(O)cij + ) B3V - v ) — (92 1J) : (2.28)
rtt t rt t -
{0 - J¢ 1959mm! [0(0) - J(O)lomm + 0 (aD(s™ - ¢7)
0
S G- Uy (g2 mm) . (2.29)

10




t * t s -1
oo =] (a27) ds . (2.30)

Expanding Eq. (2.27) term by term for the strains, one has

ely = (D}agoyyh + {0 - 3-{gzog,} + {0 - J}{ghels}. (2.31a)
Similarly,
e5, = {0 - Ji{ghol } + D)igpas,} + (0 - J}{ghols]
"l = 29} iggery)
P efy = (D - Ji{gpery ) + (0 - Jhiggus,t + (D){gpel,t (2.31b)

The transient components of the creep and shear compliances can be

written in the form of the Prony series as,

-\
30(0) = V0 (1 - e "
r
. -'r"
‘ ed(.) = Jrll - e |y (2.32)
' r
where e and -, are the reciprocal of the retardation times in creep and
shear respectively. Also, let,
D(0) = DO
J(0) = JO (2.33)
Considering a term of the form TD}iggsgj} in £q. (2.31) and substituting
Eqs. (2.32) into Eq. (2.33) gives,
t
t A (v-v)
ottt r d .t 1
| {Df{gzoij] = DOjij + fo ; Drll -e | - [gznijldr (2.34)

Recognizing that Eq. (2.34) is similar in appearance to Eq. {2.6) and

making use of the results derived in Section 2.2, one obtains

11
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e — e+ A —— et A

tty sttt L
where D} is the instantaneous creep compliance function at time t,
t _ t t
DI = DO + 92 Z“ Dr(l - Br)o
OEJ are the hereditary strain components due to tensile creep at time
t,
t t-at t t-at ‘*rAwt t-at
Qij = ; lg; MCHAE qr’ijl
-xrAwt
st = I_;_e—,__
r t
A 00
and, q& i are components of the hereditary integral given by the

recurrence formula,

t T pest t.t t-at

_ t-at t
9.5 7€ . 55+ Hepriy - 9 gy e

Similarly, a term of the form {J}{ggcsj} in Eq. (2.3la) can be

expressed as,

ottt tt
'J?jgzdij} = J oD

t
i + P (2.36)

ij?

where, JE is the instantaneous shear compliance fun<tion at time t,

t L A
J=dg 9y 0 (1 - ),
r
ng are the hereditary strain componeats due to shear at time t,
-1 Aut
t - t-at, t t-at r t-at
Pign Ll ey o e Pr.ij
—rrAwt
t_l-e
r erwt
12




e oo ‘-’!“‘r

—_——

t

and, pr,ij are components of the hereditary integral given by the

recurrence formula

t
t SR8V ¢ st

ot s - tt t-at t-at; t

roig T 19205 - 97 ogy Iiy
Substituting Eqs. (2.35) and (Z2.36) in Egs. (2.31) and dropping
superscripts, one obtains
€)1 = 0yoyy * (Op = Jpdogy + (Op - Jy)ogz + Hyy
€2 = (Dp - Jp)oyy *+ Dyogy + (D - Jp)ogs + Hyp

Y2 = 2o * Hpp

833 = (DI - JI)011 + (DI - JI)022 + 01033 + H33' (2.37)

where

117 Q1+ %y + Q33 - Pyy - Pys

22 79 * Qo * Q33 - Pyy - Pyg

H,, = 2P

12 12

33 = 0 » Qo+ Q33 - Py - P (2.38)

Equation (2.37) can be expressed in matrix form as

{ev = [N]{a: + [H-. (2.39)

Note that the left hand side of Eq. (2.39) is a vector containing
the algebraic difference of kinematic strains {¢} and dilatational

strains {5ije},

13




e et

T |
{ef = {(511 - 6)’(522 - e)-les(533 - 6)[, (2.40)
while {a} contains four components of Cauchy stress,

T
(o} = {oyyopp00120033h

and {H} is a vector of hereditary strains given by,

(it

= (HypoHppaHy o33l

The matrix 'M] is a 4 x 4 coefficient matrix given by,

- ]
- (0,-9)) D, 0 (0,-d)
0 0 2J1 0
(0,-d;)  (0;-3) 0O D,

Pre-muttiplying Eq. (2.39) by lN!'l, an explicit expression for stresses
in terms of strains is obtained:
o= (Mt - HY L (M) o= IN]TR (2.41)
Equation (2.41) provides a general viscoelastic constitutive
relation that can be applied to either plare stress, plane strain or
axisymmetric problems. For plane strain, the out-of-plane strain
component e 33 is identically zero. The corresponding stress
component , 1330 May be obtained from Eq. (2.41) by setting e33 = 0.
Since for the plane stress case ’313 is identically zero, the
corresponding strain component ey3 can be evaluated from Eq. {2.39) as
e33 = (Op - Jp oy + opp) + gy
Note that the use of creep and shear compliances as material property

input allows the Poisson's ratio to te time-dependent. Hence, the

14




prsent formulation is applicable to any thermorheologically simple
isotropic viscoelastic material over any length of time.
For the special case where the Poisson's ratio is a constant with
time, then
J(v) = (1 + v)0(v). (2.42)

The matrix [N] takes the form,

) Y 0 -V
[N] = DI -v 1 0 -v
0 0 2(1+v) O

-v -y 0

and, the corresponding hereditary strains are,

Hip = Q- v(Qp * Q33)

Hap = Qoo - -(Qqy *+ Q33)

Hig = 201+ )0,
H33 = Q33 - (@ + Qpp) (2.43)

If the viscoelastic properties of a material are defined by its
bulk and shear compliances instead of the creep and shear compliances,
then the creep compliance D(.) in Eq. (2.27) is replaced by the bulk and
shear properties. Using the viscoelastic relationship betwen creep,

bulk and shear compliances given by,

0(v) = é M) + 3 J(v), (2.44)

and substituting in Eq. (2.27), the relation in Eq. (2.39) is

obtained. However, for this case the matrix [N] has the form,

15
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B e aaamma e g

[ 1 2 1 1 1 1
GM +3J9p) @M -39) 0 (M -39
1 1 1 2 1 1
@Gmo-tay dm+2uy 0 dwo-1ay
T DA e 9" Y3 g M -39 (2.45)
0 0 2J 0
] 1 L 2
GM -39 @M -3d) 0 (GH +33) ]
and the corresponding hereditary strains are,
Hyp =5 (Qp + Qpp + Q33) + 5P - 3 (P, + Pu))
11 79 Wy YR+ U330 + 37 -3 (Fp * P53
Moy = & (Quy +Q,, +Q0a) + 2P - L (P 4P
22 9 Wy * Qpp * V330 * 35 -3 (P + P33
M2 = 2P,
H - L (Qy + Q,, + Qq,) + 2 P 1 (P, + P,.) (2.46)
33 79 (N * Rpp v R33) * 3 P33 -3+ ¥y .

2.4 Finite Element Model

This section describes the finite element impiementation of the
nonlinear viscoelastic constitutive law presented in Sections 2.2 and
2.3. Since viscoelastic materials often undergo large displacements
especially when subjected to creep type of loading, the geometrically
nonlinear analysis described in {1,2] has been incorporated into the
viscoelastic formulation.

[nvoking the principle of virtual work and following the procedure

outlined in [1,2], ore has
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where, lMijrs are the components of the viscoelasticity constitutive

= - IV 1r-—6(1eij)dv + ti6u.dS,  (2.47)

tensor. The rest of the quantities and the superscripts in Eq. (2.47)
have the same definitions as given in [2]. Let each displacement

increment at any time t be approximated as,
.
Buy = jzl Auimj(xl,xz). (2.48)

Substitution of Eq. (2.48) into Eq. (2.47) gives

(<) + (K7D aut = (FY) - TFO, (2.49)

where
(k'] = ho (85 1T(M](BY)dA, h = thickress (2.50)
A
1
and [M] is the 4x4 viscoelastic constitutive matrix defined in Eq.
(2.41). Note that for the nonlinear viscoelastic case, the 'linear'
stiffness matrix [KLI is not really linear, but has nonlinearities
imbedded in it due to the presence of the material kernel functions (go,
gy» 9p) in the matrix [M]. The nonlinear stiffness matrix [K’] is the

direct result of the geometrically nonlinear formulation and is given by

(K] = h"  [B°]T[<][8°]dA. (2.51)

Ay

The definitions of matrices [BL], (B°], {FL

b, {F7} and [:] are the same
as in [2]. The Cauchy stress components are computed by using the
viscoelastic relation,

{ob = [M({e: - H}) (2.52)

which has been derived in Section 2.3. For a geometrically nonlinear
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analysis, the vector {e} contains components of the Almansi strain
tensor

U EL au_ Ju
m n n) _

Ix Ax ax, Ix *km
k% 'm

9 . (2.53)

[t is evident that Eq. (2.49) contains two possible sources of
nonlinearities: material nonlinearity due to Schdpery's law and,
geometric nonlinearity arising from the large displacement (and small
strain) formulation. In order to obtain a solution to this nonlinear
equation at any time step, the Newton-Raphson iterative technique is
used. The incremental displacement {suj obtained at the end of the rth
iteration is used to update the total displacement for the nth time

step,
+ AU (2.54)

The iterative procedure continues until a convergence criterion is
satisfied. After that, the solution proceeds to the next time step.

Note that for the first time-step, the initial cordition N, =0 is

r-1
used.

3. MOISTURE DIFFUSION AND DELAYED FAILURE
3.1 Governing Equations for Diffusion
The nonlinear Fickean two-dimensional, diffusion model presented in
the present study is the one investigated by Lefebvre, et al. [12]. The
diffusion model can also be applied for penetrants other than moisture,
as long as the diffusion process is Fickean.
Fick's law for the two-dimensiona! diffusion of a penetrant within

an isotropic material is given by
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3 ac 3 acy _ 3¢
3Ix (0 ax) * 3y (0 3y) at? (3.1)

where, c is the penetrant concentration, which is a function of position
and time, and D is the diffusion coefficient.

In order to model the transport phenomena in polymeric materials,
Lefebvre et al. [12] derived a nonlinear diffusion coefficient based on
the concept of free volume. According to this theory, the diffusion
coefficient for a polymeric material above its glass transition
temperature is given by,

29 Te-B{l/f - l/fo}, (3.2)
0
where 0 is the diffusion coefficient, T is the temperature, f is the
free volume fraction, and B is a material constant. The subscript 'o'
denotes values at the reference state. [t is then postulated that the
change in fractional free volume is due to changes in temperature,
penetrant concentration, and the transient component of the mechanically
induced dilatational strain. t is further assumed that these changes
are additive, which is similar to the assumptions made by Knauss and
Emri {15]. Thus

f = fo + JanT + e, * 3ycN. (3.3)
In £q. (3.3), a is the linear coefficient of thermal expansion, y is the
linear coefficient of expansion due to moisture, N is an exponent for
the saturated state, and b8y is the transient component of the
mechanically induced dilatational strain. The dilatational strain due
to the ambient stress state can be written as

ek ° ekk(O) * e (3.9)

where ekk(O) and A€, are the instantaneous and transient components of

19




the mechanically induced dilatational strain T

1
e (0) = 5 M(0)op, (3.5)
re —lftM(t ) 2 (g0, )d (3.6)
kk T30 YT v aT 9209t -

where M(y) is the bulk compliance of the material. Combining Eqs. (3.4)

and (3.5), we obtain

- 1
| M(O)okk. (3.7)

Substitution of Eq. (3.7) into Eq. (3.3) and the result into Eq. (3.2)

yields

1
ek = 3 Mook

fo + 3(aaT + YcN) + (e

o

3(aaT + YcN) + (e

D ==2T exp {%— 1 I} (3.8)
]

° kk ~ % Mo ki)
From the viscoelastic formulation presented in Section 2, it is evident
that the dilatatioral strain S is dependent on the stress history,
temperature and penetrant concentration,
ek = ekk(nkk,T,c) (3.9)
Hence, the two sources of nonlinearity in Eq. (3.1) are moisture
concentration ¢ and dilatational strain S Consequently, in order to
accurately model the penetrant transport phenomena, the diffusion
boundary-value problem needs to be solved in conjunction with the
nonlinear viscoelascicity boundary-value problem by using an iterative
procedure. The same solution procedure can also be applied for
diffusion in polymeric materials where the plasticizing effect of the
penetrant may cause the viscoelastic time-scale shift factor to be

concentration dependent,

a = a(-,T,c) (3.10)
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“ne example of such a shift factor definition can be found in the work
of Knauss and Emri [15], where the authors have used the concept of free

volume to define a shift factor

aAT + yC + xekk

Gekk

- B_
o(Tcue) = ol & (e

)}, (3.11)

where 1 is the coefficient of the dilatation term. Note that the
coefficients a and v in Egs. (3.8) and (3.11) are, in general, functions
of T, ¢ and 1k but have been assumed to be constant for the sake of
simplicity. This assumption is valid for temperatures above the glass

transition temperature and below the boiling point of the penetrant.

3.2 Finite Flement Formulation

Fick's law for two dimensional diffusion in a homogeneous isotropic

material is given by,

) 3Cy o, 3 3Gy L 3C Lo
= (0 5) 7y (3) = = ine (3.12)

subject to the bourdary conditions,

. ) 3c T - S
D PRl D 3y ny +q=0o0n Lo t >0 (3.13)
c=con PR t 0 (3.14)
and the initial condition,
c=cy ing , t=20 (3.15)

where, 2 is the two-dimensional region in which diffusion occurs,
and r is the boundary of u.

The finite-element formulation of Egs. (3.12)-(3.15) can be
developed following the variational procedure used by Reddy [17]. The

time dependent moisture concentration is approximated over an element
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N
c¥(x,y,t) = Z b; Sxy)ct (t) (3.16)

where N is the number of nodes per element. The resulting finite-

element equations cast in a matrix form are given by

(e} + (e} = (£ (&) (3.17)
where
Mgﬁ) = J w?w?dxdy (3.18a)
Qe
e e
(e) ) awi 3y R aw
KiS' = [ . D5 5;1 t o syl)d dy (3.18b)
Q
FI&) -1 yBgas. (3.19)
e

The time derivative «C} is approximated using the g-family of

approximation,

e{é}n+l + (1 - 3){¢e;

in © n: for 0 < 8 <1 (3.20)

n+1
whereat is the time step and <c}n denotes the value of :c} at time
t,. Using the approximations (3.22) in (3.18) for time t, and t

gives

A e - 8@ - p®) -0 (3.21)

where
[A(e)l - [M(e)] + 8Atn+1[K(e)]

[B(E)I [M(e)l (1 - 8)Atn+1[K(e)l

{P(e)} = at

(o{F(®)} v (1 - e)(F®)} ). (3.22)

n+l n+1
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Recognizing that a source of nonlinearity in the form of the diffusion
coefficient D is imbedded in the matrix [K(&)], the Newton-Raphson
technique is employed to solve for the concentration {c}n+1 at each time
step. Note that for n = 0, the vector fc}o in Eq. (3.21) is known from

the initial conditions.

3.3 Delayed Failure: Uniaxial Formulation
When a viscoelastic material undergoes deformation, only a part of
the total deformation energy is stored, while the rest of the energy is
dissipated. This behavior is unlike elastic material where all the
energy cf deformation is stored as strain energy. Reiner and Weisenberg
[5] postulated that it is this time-dependent energy storage capacity
that is responsible for the transition from viscoelastic response to
yield in ductile materials or fracture in brittle ones. According to
this theory, failure occurs w~hen the stored deviatoric strain energy per
unit volume in a body reaches a certain maximum value called the
resilience, which is a material property. Note that when there is no
dissipation, that is, when the material is elastic, then Reiner-
Weisenberg criterion becomes identical to the von Mises criterion.
Consider the single Kelvin element shown in Fig. 1, subject to the
uniaxial tensile load o(t). The total strain response e(t) due to the
applied stress can be divided into two components: the instantaneous
respone e, and the transient response el(t),
e(t) = e, t el(t) (3.23)
For uniaxial creep, the applied stress o(t) is given as
a(t) = OOH(t) (3.24)

where H(t) is the unit step function.
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Figure * A Single Kelvin Unit Subject to Uniaxial Stress.
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Substituting Eq. (3.24) into Schapery's nonlinear uniaxial single
integral law given by £q.(2.1) and expressing the transient creep
compliance Dc(w) as

-3
v) =0, =01 -e 7)) (3.25)
leads to,
_xlw
e(v) = gODOGO + 91920001(1 - e ) (3.26)

where y is the reduced time defined in Eq. (2.2).
Comparing Eg. (3.26) with (3.23), it follows that
€ ° goDoco

-

] 1Y
el(l) = 9101(1 - €

)92‘0 . (3.27)

For a given applied stress ) the stress developed in the nonlinear

spring with compliance Dogo is 33 and the corresponding strain

is EZ' For the spring with the nonlinear compliance Dlgl the stress is
given by,

s °l

1 EIEI (3.28)

where the superscript 's' denotes quantities related to the spring.

From Fig. 1 it is evident that e? and S are equivalent. Hence,

-, v
3= gyl - e Iy, .

. (3.29)

The total energy, WS, stored in the two springs over time t is (see Hiel

et al. [14]),
e
0 t
WS = J 22de + s 5383dt
0 © 0 171
“A,
o1 2 1 . 17,2 2
=5 90,05 + 29,011 -e¢ 17095007 (3.30)
25




For a viscoelastic material represented by multiple Kelvin elements
in series, Eq. (3.30) takes the form,
_\w

n
1, 22 2
+ 5 9,95% rgl 0.(1-e ") (3.3

S _
W> = gODoc

N —

According to the Reiner-Weisenberg hypothesis, failure occurs when the
stored energy WS reaches the resilience of the mate-ial. Oenoting the
resilience as R, the expression for the time dependent failure stress

obtained from £q. (3.31) for uniaxial stress state is,

(3.32)

13 | 70|

] 1 2 W
29%0% * 7 9% o (01 -¢ DRk
r:

lw

3.4 Delayed Failure: Multiaxial Formulation

If s T and 3 are the principal stresses at any point in a
viscoelastic material, then by definition, the shear stresses dre zero
on the principal planes. In order to simplif, the derivation, let 't be
assumed that the viscoelastic material is represented by means of a
single Kelvin element (see Fig. 1) in each principal direction. The
applied multiaxial creep stresses in the material principal directions

are given by,

11 ° clH(t)
Sop = OZH(t)
033 = ”3H(t)' (3.33)

Substitution of Egs. (3.33) in Eqs. (2.31) and (2.32) results in the

following expressions for the corresponding viscoelastic strains,

Jo Jo S\
ell(t) = Uol~1 + (1 - 5;)02 + (1 - ﬁg)r3| + 01[(1 - e )92‘1
-y b J -1 3 -\
r 1 r r
+{(1-e ) + 5{ (1 -e ) gpuy + 11 - )
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\rw '\ru
)(n1 * oyt 03) + (1 + v)g?(l - e )ciéij.

(3.44)

Oij = —vgz(l -e

4. NUMERICAL RESULTS
In this section results of a number of linear elactic, linear
viscoelastic and nonlinear viscoelastic analyses are discussed in light
of available experimental or analytical results. All results are
obtained using NOVA on an [BM 3090 computer in double precision

arithmatic.

4.1 Elastic Analysis of a Composite Single Lap Joint

Renton and vinsor [18] used a closed form elastic solution to
conduct a parametric study of the effect of adrerend properties on the
peak stresses ~ithin the adhesive in a composite single lap joint. A
simildar parametric study was carried out using the finite element
program NOVA. Tre gecmetry,, finite element discresization and boundary
condit’ons for tre corposite lap joint are shown in Fig. 2. For the
sake of s mplicity, or'y identical adherends are considered. Each
adherend is made up of seven laminas of equal thickness. The
orthotropic material properties for a lamina are given in Table 1. In
order to maintain mdaterial symmetry about the laminate mid-plane and
thus eliminate bending-stretching coupling, a €¢/0 /-3°/03/-39/0¢/a0 ply
orientation was selected for the analysis. Note that this type of ply
orientation places the ¢* ply immediately adjacent to the adhesive
layer. The adhesive used is FM-73 and its isotropic linear elastic

properties are listed in Table 2. The adhesive layer is modeled using
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Table 1. Orthotropic Material Froperites for Composite Acherend.

Gy - 46.885x10° MPa

015 - 03 = 4.13710% Mpa
Cop - N33 - 11.962:10° MPa
3 Gyp - 2.068410° MPa

(yy - 'JSS - 1)66 : 3.4-’17x1(_‘)3 MPa
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Table 2.

Isotropic Linear Elastic Properties for FM-73,

- 2.78x123 MPa

m
t

G - 1.01x103 Mpa

2= 0,38
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sixteen eight-noded quadrilateral) eiements aiong 'ts length and two
elements through its thickness. A series of elastic finite element
analyses is performed to study the effect of ply orientation, lamina
primary modulus (011). and geometric nonlinearity on the pedk stresses
in the adhesive.

In order to study the influence of ply orientation on the adhesive
stress distribution, stress analyses were performed for 9 = 0°, @ = 15°,
3 = 45°, and & = 90" respectively. The results are shown in Figs. 3
and 4. The plots show the variation of stresses along the upper
bondline of the overlap. The parameter x/c is the normalized distance
from the bond center®ine such that the value x/c = -1 corresponds to the
left-hand free edge of the bond overlap. It is evident from these
figures that an increase in the ply orientation angle 2, causes the peak
stresses to increase near the free edge cf the bond overlap. The
adherend with a 0°/90" ply orientation (cross-ply) shows a 28% increase
‘n peel stress and a 7% increase ir shear stress over the corresponding
values for a O (unidirectional) ply orientation. This is not
surprising since a cross-ply adhererd has a lower bending stiffness
which results in a larger latera) deflection causing higher stress
concentratiors at the overlap ends.

The influence of the lamina primary modulus (Qll) on adhesive peel
and shear stresses can be seen in Figs. 5 and 6 respectively. A
unidirectional (O-degree) adherend ply orientation is used for this
analysis. The two figures show a significant incredase in the peak
adhesive stress as the value of Q1) decreases. This is understandable
as a more flexible adherend would undergc larjer bending and hence

produce higher stress concentrations at the overlap ends.
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Figt © 3 Influence of Ply Orientation on Adhesive Peel Stress.
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Figure 4 Influence of Ply Orientation on Adhesive Shear Stress.
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Figure “ Influence of Qi1 on Adhesive Peel Stress.
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Figure 6 Influence of Q11 on Adhesive Shear Stress.
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Harris and Adams [19] conducted large displacement finite element
analyses on a single lap joint with aluminum adherends and observed
significant reduction in peak stresses at the edge of the adhesive as
compared to linear results. In order to observe the effect of geometric
nonlinearity on a single lap joint with laminated composite adherends, a
large displacement analysis was performed using the program NOVA. Due
to its greater susceptibility to bending, cross-ply laminated adherends
were used for this analysis. The results can be seen in Figs. 7 and
8. The geometrically nonlinear analysis results in a 30% reduction in
the peak peel stress and a 15% reduction in the peak shear stress. The
horizontal shifting of the nonlinear curves is due to the configuration
coordinate update required by the large displacement analysis.

4.2 Nonlingar Viscoelastic Aralysis of a Composite Single

Lap Joint

A nonlinear viscoelastic analysis of a lap joint made of composite
material was carried out over a time period of forty hours using NOVA.
The specimen gecmetry and the finite element discrecizaiion are the same
as for the elastic analysis as shown in Fig. 2. However, instead of a
uniform end traction, a uniform end displacement of 0.363 mm is applied
to the end of the joint and is held constant with time. The adherends
adre made of symmetric cross-ply laminates whose properties are given in
Table 1, wnile the adhesive used is FM-73 and its creep compliance and
Schapery parameters can be found in Table 3.

Figures 9 and 10 show the variation of shear stress and shear
strain respectively across the entire bond length over a period of 47
hours. The sharp peak on the left-hand edge is due to the presence of a

re-entrant corner and also due to the difference in material properties.
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Figure 7. Influence of Geometric Nonlinearity on Adhesive Pec] Stress.
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Figure 3. Tnfluence of Geometric Nonlinearity on Adhiesive Shear Stress.
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Table 3. Material Data for FM-73 Unscrimmed at 30°C.

Elastic Compliance, D, 360 x 10°/Mpa
Poisson's Ratio, v: 0.38
Coefficient of Thermal Expansion, a: 6.6 x 10‘5 m/m/°K

Prony Series Coefficients:

Dy = 11.05x106/Mpa vy = 10 secs.

D, = 12.27x10-6/Mpa -, = 102 secs.

Dy = 17.35x10°5/Mpa -3 = 103 secs.

Dy = 21.63x1075/Mpa -4 = 10% secs.

05 = 13.13x1078/MPa ¢ = 10° secs.

Dg = 41.78x107%/MPa 6 = 108 secs.
a
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Figure ¢

Variation of Shear Stress with Time for Entire Overiap.

42

1.0



0.10

X TME«OMRS
A TME«4OHRA

Figure 10 Variation of Shear Strain with Time for Entire Overlap.
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Figures 11 and 12 provide a close-up view of the sheir stress ard <7-ain
gradients at the free edge. As might be expected, the shear Stress
undergoes relaxation which results in a 36% decrease in tne peak value
at the left hand edge. The stresses have been normalized with respect
to an average shear stress value of 4.5 N/mmz. The peak shedr strain,
however, shows an increase of 35% over the same period of time.
Similarly, Figs. 13 to 16 reveal that while the peak values of the pe>z’
and axial stresses decrease by 26% and 32% respectively, the
corresponding strains show a respective increase of 63% and 6%. The
reason that the strains increase with time even though the joint end
deflection remains fixed, is because the adherends are modeled as
elastic continuums. As the stresses in the adhesive relax with time,
the elastic adhererds deform to attairn a new woquilibrium configuratinn
and this leads to an altered state of strain within the adhesive.

Hence, it is very important that the elastic nature of the adberercs ne
taken into account in an analysis. Also, the significant increase in
adhesive strains with time is a viscoelastic phens-incn and therefcre  *
cannot be precicted by means of a purely elastic analysis. Tris fact
emphasizes the reed to model the adhesive “ayer as 4 viscoelastic medium
in order to be able to predict the long-term durability of a bcnded

joint,

4.3 Nonlinear Fickean Diffusion In Polystyrene

In order tc validate the diffusion model implemented in NOVA and
discussed in Secticn 3, results from a nonlinear diffusion analysis
presented in [20] are used. The tect problem involves unsteacy sorption
of a penetrant in a semi-infinite medium for a diffusion coefficient

that is an expornential function of penetrant concentration, trat is,
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Figure 11 Variation of Shear Stress with Time Near the Free Edge.
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Joe 3y e (kC/CO}. finite element predictions were obtained for k =
Z.514 and k = 3.912 and the results were compared with the published
results represented by the solid lines in Fig.17. Excellent agreement
is observed for the two valurs of the coefficient k.

Levita and Smith [21] conducted experiments to study gas transport
in polystyrene 2:d vound that the diffusion coefficients for gases
decreased with time when the polystyrene film was subject to a constant
uniaxial sirain. This effect was attributed to the continuous free
volume recovery {densification) in the polystyrene specimen at constant
strain. The study also indicated that larger free volume elements
f~Zrease in size faster than the smaller ones as volume recovery
or2grasses.  Using the results published in [21] as a guideline, NOVA
~35 U3zt Lo study the time dependence of the diffusion coefficient for
Tangn-1Cxice gas inoa polystyrene film at constant strain. For this

152, tre carprature and moisture concentration effects presented in Eq.
3.2) sere regiected, resulting in a diffusion coefficient that is
w1 fur o tion of the trarsient ccmponent of the dilatational strain
r. fnoturr, ‘s a measure of the change in the free volume. Figure
snins the variation of the diffusion coefficient with time for three
“frerernt strain levels, The materiai properties for polystyrene which
were sutained from {271 are given in Table 4. From Fig.18 it is
evident that, independent 5f the strain level, the diffusion coefficient
reqchss a peak value at around t = 1 hour and then slowly decays to the

referarce value, D This behavior can be attributed to an initial

o
‘ncredse in free volume due to the application of the uniaxial strain,
91 1cand by a continuous recovery in free volume (densification) at a

“oretart strain as the polystyrene film underqoes relaxation. A larger
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Table 4. Material Properties for Polystyrene at 50'C.

Bulk Compliance:

< = = =
w n —
it " [ t

=
o
!

Shear Compliance:

Jg =

J| = 2.16/MPa

Jy = 2.92/MPa

J3 = 1.38/MPa

Jg = 2.88/MPa

Jg = 2.31/MPa

Jg = 3.59/MP3

J7 = 0.648/MPa

Reference free volume fo

Qiffusion coefficient DO

= 1.2x10‘4/MPa

0.2896x10-4/MPa
0.2246x10-4/Mpa
0.3721x10-4/MPa
= 0.1354x107%/MPa

= 1.0x1073/Mpa

il

0.033

1

9x10‘6 mmg/sec
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.515x102 s

.515x10% s
.515x10% s

.515x1010
.515x1012
.515x1013
.515x1014
.517x1015

.515x1016

ec.
.515x103 sec.
ec.

ec.

.515x108 sec.

sec.
sec.
sec.
sec.
sec.

secC.




applied strain produces larger initial dilatation, and this results in a
higher peak in the diffusion coefficient. Figure '8 also reveals that
the time rate of free volume recovery, and hence the time rate of
decrease in the diffusion coefficient, is proportional to the applied
strain level.

The influence of penetrant molecule size on the diffusion
coefficient for gases in polystyrene was studied by varying the
magnitude of the material parameter B in Eq. (3.8). The temperature and
strain were held constant at 50°C and 1.8% respectively. The prediction
obtained from NOVA are shown in Fig. 19 for two values of B. The faster
rate of decrease in the diffusion coefficient for a higher value of B
implies that the larger free-volume elements decrease in size faster
than the smaller ones as volume recovery progresses. The NOVA
predictions are gualitatively in good agreement with the results
presented in [21].

When a polymeric materiai is in the rubbery state, equilibrium is
reached very rapidly in response to variations in temperature, stress
and penetrant conentration. By contrast, a material in the glassy state
is not in thermodynamic equilibrium and the response of the free volume
to changes in external conditions is delayed. This metastable state
causes the free volume to slowly collapse with time until egquilibrium is
reached. This phenomenon is known as physical aging and causes
relaxation processes to take place over a longer time. Struik [23]
proposed that for a material in the glassy state, effective time i is

related to actual time t by,

N S G D (4.1)
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where t, is the aging time at the start of service life or testing
and u is a constant such that 0 < u < 1. Ffor such a material, the
definition of reduced time given by Eq. (2.2) is no longer valid and

should be modified to,

Jo= ] (@) s (4.2)

where a:T is the shift factor.

The effect of physical aging on the diffusion coefficient for
carbon-dioxide gas in polystyrene was studied by implementing Eqs. (4.1)
and (4.2) in NOVA. The values of temperature, strain and te were set at
50°C, 1.8% and 24 hours respectively. Figure 20 shows that an increased
physical aging denoted by a higher value of the parameter ., causes the
diffusion coefficient to decay slower than the one for which . is
lower. This behavior is expected since increased physical aging causes
the free volume recovery to take place over a longer period of time.
Note that when there is no physical aging, . and te are equal to zero
and 1 is identically equal to t.

4.4 Nonlinear Viscoelastic Analysis of a Butt Joint
Including Moisture Diffusion

The effect of a change in the free volume of a polymer on its
viscoelastic response was discussed by Knauss and Emri [15]. They used
the unifying concept of the free volume by considering that fractional
free volume depends on three variables: temperature T, moisture
concentration ¢, and mechanically induced dilatation 5. Lefevbre et al.
[12] extended the free volume concept to define a nonlinear diffusion
coefficient, which results in a coupling detween the viscoelasticity and

the diffusion boundary value problems (see Section 3.1). The influence
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Figure 2" Effect of Physical Aging on the Diffusion Cocfficient for Polystyrene.
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T e e e e ™

of th's coupling on the viscoelastic response anc moisture 1iffusian
within the adhesive layer of a butt joint was investigated by using the
program NOVA. The specimen geometry and finite element discretization
are shown in Figs. 21 and 22, respectively. A uniform axial
displacement of 0.1 mm is applied at the end of the joint and is held
constant with time. The adherends are made of aluminum and the adhesive
used is polystyrene. The various material properties are listed in
Tables 4 and 5. The selection of polystyrene as an adhesive was
prompted by the fact that it is one of the few polymeric materials that
have their viscoelastic properties and diffusion parameters adequately
documented. The normalized moisture concentration at the free edge of
the aghesive layer is unity, and the initial concentration throughout
the adhesive layer is zero. The tests are conducted at the reference
temperature of 50°C.

Figure 23 shows the moisture concentration profiles within the
adhesive layar at three different times when trere is no coupling. In
this case the diffusion coefficient remains constant with time, that is,
0 = DC. Figure 24 sroas the mo sture concertration profiles for the
case where there 15 visceeldstic coupling only, that s, w~hen the
diffusion coefficient depends or the transient ccmponent of tne
dilatational strain. Ffiqure 25 depicts the case where there is full
coupling, that is, the agiffusion coefficient is a function of the
dilatational strain and the moisture concentration at any given point in
the adhesive. Conversely, the viscoelastic shﬁft factor is now a
function of the dilatational straim and the moisture concentration.
Figure 26 presents the results for each of these three cdses for

comparison at time t = 8 hours. From these figures it is evident that
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Figure <l Specimen Geometry and Boundary Conditions for the Analysis of a Butt
Joint (L =200.5, b= 30.0, e = 0.25, all dimensions in mm., Applied Stress =
10 MPa.).
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Figure 22 Finite Element Discretization and Boundary Conditions for the Analysis of
a Butt Joint.
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Figu.c 23 Moisture Profiles Within the Adhesive When There Is No Coupling.
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Figure 24 Moisture Profiles Within the Adhesive For Only Viscoelastic Coupling.
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Table 5. Properties for Elastic Analysis of a Butt Joint.

Materials
Steel
Aluminum
Eponal

Rigid Epoxy

E(MPa)
2.07x10°

0.7x103
5.8x103
2.2x103

66

0.29
0.33
0.33
0.33



the effect of coupling is to accelerate moisture diffusicn in the
adhesive. The mechanically induced dilatation together witn the
swelling due to moisture sorption results in a higher free volume
fraction within the adhesive which, according to £q. (3.9), causes
diffusion to proceed faster over the same period of time. It is to be
noted that in Fig. 26 the curves become less concave as the coupling
increases, which is in good agreement with the results published in
[20].

Figures 27 to 30 show the variation of the stresses and strains
with time within the adhesive layer in the butt joint when there is no
coupling due to moisture induced swelling. Mathematically, this implies
that y= 0 in Eq. (3.8) and (3.11). From Figs. 27 and 28 it is evident
that the stresses do not relax significantly over the time period of the
analysis. This is because the elastic adherend acts as & spring causing
the adhesive to creep even though the joint end displacement remains
fixed. However, there is a slight relaxation in the normal stress as
one moves towards the center of the bond. The large increase in the
strains, as shown in Figs. 29 and 30, is due to the creep caused by the
strain recovery in the elastic acherend. This observation is supported
by Fig. 31 which shows that the normal strain in the adherend
immediately adjacent to the interface undergoes significant reduction
with time. The decrease in the adherend normal stress, as shown in Fig.
32, reflects the concurrent stress relaxation that occurs in the
adhesive and triggers the strain recovery in the adherend.

Figures 33 to 36 show the effect of moisture induced swelling on
the viscoelastic stresses and strains in the adhesive layer.

Mathematically, this means y has a nonzero value in Eqs. (3.8) and
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Figure 30 Variation of Shear Strain in the Adhesive With Time For Viscoelastic Cou-
pling.
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(3.11). The actual value of y selected for this stucy is 0.001. For
this value of y, the moisture absorbed causes large swelling strains
within the adhesive, which increase in magnitude as the diffusion

progresses. This mcisture induced swelling strain causes a reducticn |

-

the mechanically induced normal strain and hence a icwer value for the
normal stress in the adhesive. This effect can be observed in Fig. 32
where progressive swelling has caused a 25% reduction in the peak normal
stress over a period of 8 hours. [t is interesting to note that the
difference between the two stress curves diminishes as one moves tawards
the center of the bond. This behavior is expected since there is very
little moisture near the center of the bond and sc the stress reduciion
is primarily due to visceelastic relaxation. Thne large increase in the
adhesive strains, 4s seern in Figs. 35 an1io , 15 due t¢ the idhererd
acting as a elasti~ sorirg.

Figure 37 snocws ithe irf'yence of th2 moisturs ccefficient ., on the
normal stress in the achesive layer if<er eignt hcurs of soratian.,  2s
can be seen, the swelling inducea for v = 0.C01 resu’ts in a
significantiy lower normal stress near tne fra> adge as compirad Lo tne
case where . - 0. Away from the free 2djJe, the tawg Siress curves appodr
to merge as one moves tosards tre interise of cre bord.  This is aenause
the lcw moisture concantraticrs present in the bord interior is

insufficicnt to cause any significant reduction in the normal stress due

to swel!rg.

4.5 Delayed Fallorce of 2 But: JoIint
The theory preseated in Secs. 3.3 and 3.9 was applied to predict
viscoeldastic treep failure within the adnesive in a butt joint. The

specimen geumetry and the finite element discrotizaticn dare the same as
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shown in figs. J1 and 22, respectively. The adherend is madge cf
aluminum and its material properties are given in Table 5. ‘he adhesive
used is FM-73 and its tensile creep complience is 1isted in Tabie 3.
The failure parameter (R) for FM-73, also known as the resilience, was
obtained by computing the area urder the stroso-strain Curve presec~ied
in [24]. This procedure yielded a value of the rasilience as 1.3
N.mm/mm3. Note that the area under the visco-plastic yield piateau was
not included in computing the value of R, According tc the Reiner-
Weisenberg theory, failure occurs when the stored energy per unit volume
in the body reaches the resiiience F, for the material. Using this
paostulate as a failure critericn, NCVA was utilized to predict failure
in the adhesive layer of the butt joirt supject to a constant uniavial

T

tension. ne irfluencs o7 acpiieq stress level on d2layed failure .as
studied by usinc a stress Jevel of 69, 6C, and 54 MPa respectively. In
all three cases, fa‘lure »as iritiated ir the athesive element ccated

right at the free-sdge ind immediateiy acjacert =2 tne interfarc,

[

was also observed that the directior of the plane o7 f1ilure was alwdys
inclined at an angle of 18 , counter-clocks’se to the x-axis. Since the
direction ¢f failure coincides with the ai-ection ¢f principal stress,
it is evident that a myltiaxial state of stress exists rear the free
edge, even though the applied stress is uniaxial. Figure 38 shows the
variatior of normal (or rreep) strdin with time at 30 C for the e’ement
in which failure is first initiated. The right hand terminaticn pcint
on the curves indicate the noint at which faiiure occured. It is
observed that for an apolied stress level of 69 MPa, the time to fa lure
(tg) is 1.5 secs.  In ather words, for this stress level, failure occurs

almost instartarecusiy. For an applied stress of 60 MPa, to increases
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to 400 secs. Reducing the applied stress to 54 MPa results in a time to
failure of approximately 10 hours. These results are qualitatively in
good agreement with the resylts presented by Bruller [6] for PMMA,

From the above observations it is clearly evident that for
/iscoelastic polymers like FM-73, the time to failure deperds stronaly
on the applied stress level., Figure 33 shows the evolution of stored
energy with time for different stress levels. Ffor very high applied
stress levels, almost all the strain energy is conserved as stored
energy and failure occurs almost immediately. For intermediate levels
of applied stress, viscoelastic creep causes a part of the strain erergy
to be dissipated. As a resu't, only a fraction of the total strain
energy is conserved as stored energy. Conseguently, the stored erergy
builds up stowly, ira'<gcus ty a "leaking vesse ", resulting in de ayed
failure. For ar aopl-ey stiress "eve’ trat is below @ certain thresrold
value for a jiven vat=""3 , =72 i3y pateq enaryy may constitute a large
fraction of the total sira’= 2nergy.  In that case, the stored enercy
wou'ld increase toc slow'’y “n 2xceed the resilicrce 0 " e material cver
any realistic length cof time, and nerce trers would be no failure even

if the applied stress acts indefinitely.

9. SUMMARY AND CONLLUSIONS
5.1 General Summary
The adhesive layer is modeled using Schapery's nonlinear single
integral constitutive law for uniaxial and multiaxial stress states.
The effect of temperature and stress level on the viscoelastic response
is taken into account by a rnonlinear shift factor definition. Penetrant
sorption is accounted for by a nonlinear Fickean diffusion model in

which the diffusion coefficient is dependent c¢r the temperature,
p
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penetrant concentration, and the dilatationd! stréir. A ce'ayed f4iiure
criterion based on the Reiner-Weisenberg failure thecry ndas also been
implemented in the finite element code. The prcgram s validated oy
comparing the present results with analytical and evperimental resu'ts
available in the literature. The program capaniiity has been extended
to account for lamirated composite adherends and adhesives with a time
dependent Poisson's ratio. In general, the computer program NOVA, is
believed to provide accurate predicticns over a wide range of specimrn

geometries, external loads, and environmental conditions.

5.2 Conclusions

The results presented in Section 4 underscore the importance of
modeling the adhesive in a bcnded joint as a viscoelastic material.
This aliows the analyst to predict thz large increments in adnesive
strains that occur with time ard cannot be prazicted by a pure’y elastic
analysis. Furthermore, other events (such as moisture diffusion ani
delayed failure), that are highly relevant for pordes joint analysis,
carnot be accurately predicted unless viscoelasticity is taken into
account. At high stress levels, nonlinear viscoelastic effects can
produce creep strains that are significantly larger than the Jinear
viscoelastic predicticns and such effacts, therefcora, should be
accounted for. The effect of change in Poisson's ratio with time in
some polymers have a significant bearing on tne final response and must

be taken into account in crder to chtdin accurate results.
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